Degradation of insulin in vitro by liver and epididymal adipose tissue from obese-hyperglycaemic mice.

نویسنده

  • S Westman
چکیده

The insulin-degrading activity of liver supernatants and epididymal adipose-tissue homogenates from genetically obese-hyperglycaemic mice (ob ob) and their lean litter mates was studied by measurement of radioactive trichloroacetic acid-soluble degradation products of the insulin molecule. Optimum assay conditions for the decomposition of the hormone were devised. The properties of the degrading activity suggested the presence of enzymic insulin destruction in both the liver and epididymal adipose tissue. There was no difference in insulin degradation in liver samples from obese and lean mice when the results were related to the protein content of the supernatants. The epididymal adipose-tissue homogenates from obese mice displayed about eightfold higher degrading activity per unit of protein than did homogenates from lean animals. The physiological significance of this finding is discussed in the light of the increased fat depots, hyperphagia, raised serum insulin concentrations and increased insulin tolerance previously recorded in this strain of mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ghrelin Does not Alter Aortic Intima-Media Thickness and Adipose Tissue Characteristics in Control and Obese Mice

Objective(s): Atherosclerosis is a chronic immune-inflammatory disease that generally leads to ischemic heart disease. Ghrelin has several modulatory effects on cardiovascular system. In this study, we investigated the effect of ghrelin on aortic intima-media thickness, size and the number of adipocyte cells in obese and control mice. Materials and Methods:This study was conducted on 24 male C...

متن کامل

Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...

متن کامل

Effect of blockade of neuropeptide Y receptor on aortic intima-media thickness and adipose tissue characteristics in normal and obese mice

Objective(s): Atherosclerosis is an important risk factor for coronary heart disease. Neuropeptide Y (NPY) and its receptors, located in peripheral tissue such as white adipose tissue, have been linked to obesity and fat storage. The role of NPY in atherosclerosis has not yet been fully studied, so this study was conducted to further investigate the effect of BIIE 0246, an NPY receptor antagoni...

متن کامل

Euphorbia kansui Attenuates Insulin Resistance in Obese Human Subjects and High-Fat Diet-Induced Obese Mice

Background Obesity is a main cause of insulin resistance (IR), metabolic syndrome, and fatty liver diseases. This study evaluated Euphorbia kansui radix (Euphorbia) as a potential treatment option for obesity and obesity-induced IR in obese human and high-fat diet- (HFD-) induced obese mice. Methods In the human study, we analyzed the body weight change of 14 patients who took a single dose o...

متن کامل

mRNA expression of diacylglycerol kinase isoforms in insulin-sensitive tissues: effects of obesity and insulin resistance

Diacylglycerol kinase (DGK) isoforms regulate signal transduction and lipid metabolism. DGKδ deficiency leads to hyperglycemia, peripheral insulin resistance, and metabolic inflexibility. Thus, dysregulation of other DGK isoforms may play a role in metabolic dysfunction. We investigated DGK isoform mRNA expression in extensor digitorum longus (EDL) and soleus muscle, liver as well as subcutaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 106 2  شماره 

صفحات  -

تاریخ انتشار 1968